
PROGRAMMING IN THE MODEL

Combining task and tool in computer-aided design

MARYAM M. MALEKI and ROBERT F. WOODBURY
School of Interactive Arts and Technology, Simon Fraser University,
Surrey, BC, Canada
mmaleki@sfu.ca; robw@sfu.ca

Abstract. Programming takes designers away from typical domain-
and task-based interfaces such as three-dimensional modellers. It thus
imposes additional cognitive load on the already challenging design
task. Programming in the model is a system design strategy that embeds
the act of programming in a 3D CAD model. This paper presents the
argument for programming in the model and two user interface con-
structs that support such programming.

Keywords. End-user programming; scripting; visual programming;
direct manipulation.

1. Introduction

Most computer-aided design (CAD) systems for buildings provide design-
ers with powerful graphical user interfaces that satisfy the requirements of
conventional designs, but sometimes this is not enough for designers who
want to explore unconventional design ideas or to work more effi ciently. In
such cases, designers need to use computer programming to have more capa-
bilities and freedom to explore (Aish, 2003). However, the shift from a three-
dimensional model to a programming environment presents cognitive chal-
lenges. Designers who program in CAD systems face the same diffi culties that
other end-user programmers face in other domains. In this ongoing project we
address this issue and propose programming in the model as a way of using
designers’ spatial and visual abilities to bring programming and design tasks
into closer proximity. In this paper we describe the problem of end-user pro-
gramming in CAD and present some of the fi ndings from the literature. Then

B. Dave, A. I. Li, N. Gu, H.-J. Park (eds.), New Frontiers: Proceedings of the 15th International Confer-
ence on Computer-Aided Architectural Design Research in Asia CAADRIA 2010, 117–125. ©2010, Asso-
ciation for Research in Computer-Aided Architectural Research in Asia (CAADRIA), Hong Kong

118 M. M. MALEKI AND R. F. WOODBURY

we introduce programming in the model as well as two example aspects of
such programming.

2. The problem

Computer programming can improve designers’ effi ciency by allowing them
to program iterative operations, making modules for future use, and helping
others by sharing code. It also helps them with their design task by giving
them freedom from the limitations of the interface and allowing them to
explore unconventional and more complex forms, as well as accommodating
change in the design process and enabling rapid exploration of variations and
alternatives (Woodbury, 2010). In design, the word “scripting” often replaces
“programming.” The difference lies only in reception: “scripting” seems less
foreboding than “programming.” There is no meaningful technical difference
between the two terms.

Users of computer-aided design systems have at least one special skill in
common: they can understand and relate to a 2D or 3D model very easily.
They are experienced and comfortable with the model and it makes sense
to them. In working with CAD systems, their purpose usually is to create a
model, for example a 2-dimensional drawing of a house or a 3-dimensional
model of an engine or a skyscraper.

Designers may be capable with the model itself, but most are not as com-
fortable with programming. Some designers struggle to understand the under-
lying structure of a programming language and the structure of the model.
Others have a hard time making sense of the syntax of the program.

Most such designers are amateur programmers acting as end-users, not
system developers – they have relatively little formal education in computer
science or programming. End-user programmers are people who are profes-
sional in domains other than programming who need to write programs in the
context of their expertise and as part of their job in order to get a task done.
End-user programmers may use any programming language independently
or as part of a software depending on the nature of their job, such as spread-
sheets for accountants, SolidWorks for mechanical engineers, and AutoCAD
for architects.

For an end-user programmer, the focus is on the task in hand and not pro-
gramming, and the goal is mostly to do the task, rather than to produce effi -
cient, reusable code. Programming is only a tool for making algorithms to
perform repetitive tasks quickly and more effi ciently or to do things that are
hard or impossible to do in the graphical user interface.

Literature shows that end-user programmers fi nd diffi culty when program-
ming is separate or different from their main task (design, analysis, etc.). To

119PROGRAMMING IN THE MODEL

write or edit code in existing CAD systems (e.g., Generative Components,
Grasshopper, Rhino script), the user has to open the scripting / visual pro-
gramming window as a separate program with a completely different interface
and functionality. During the process of writing the code, the user goes back
and forth between the model and program in order to fi nd the right objects and
operations required for the task and also to test the code and see the result. The
shift in mental activity from objects and forms to code and algorithm occurs
repeatedly. Separation of design and program requires switching between
tasks, with consequent loss of both focus and effi ciency (see fi gure 1).

 Figure 1 . Computer programming and design in CAD.

A: Programming task is usually separate
from the design task.

B: Bringing programming closer to the
design of the model.

3. Background

Kelleher and Pausch (2005) name diffi culty of code as one of the challenges
of programming languages for non-programmers that causes confusion and
syntax errors. This issue can be addressed by simplifying entering the code or
fi nding alternatives to typing code, e.g., constructing code by using graphical
objects or interface buttons, and by demonstrating the action in the interface.

Green and Petre (1996) introduced the cognitive dimensions frameworks
for evaluating visual programming languages. They consider closeness of
mapping to be one of the important criteria in the effi cacy of an end-user pro-
gramming environment. They argue that the closer the programming world is
to the problem world, the easier it is for users to mentally map between them.
It’s much harder to achieve this closeness in textual programming languages.
Pane and Myers (1996) emphasise the importance of matching between the
system and the real world by keeping the programming language consistent
with user’s external knowledge, in order to reduce novice’s learning load and
avoid confusion.

120 M. M. MALEKI AND R. F. WOODBURY

Spreadsheets are good examples of end-user programming environments
that bring programming directly to the problem domain. In spreadsheets, the
problem domain is the task being done, which is typically amenable to repre-
sentation as a table or array. The representation is a table of cells fi lled with
values and formulae. User can write programming statements directly into
the cells and see immediate feedback in the form of numbers or other values.
However, like most end-user programming systems, Excel’s task mapping
becomes much less clear when a user engages scripting (Visual Basic for
Applications (VBA)).

There is a large body of research that addresses the issues of end-user pro-
gramming and programming in general. Concepts such as direct manipulation
and visual programming are particularly applicable to the issues of end-user
programming in CAD. Two aspects of direct manipulation (Shneiderman,
1983) are reducing the distance between user’s thoughts and the system and
giving them the sense of directly manipulating the objects and not through
the program and computer (Hutchins et al., 1985). Visual programming (the
direct manipulation of programs) has appeared in CAD systems interfaces
(e.g., Rhino’s Grasshopper). In this technique, shapes and their connections
represent programming constructs and the fl ow of data or control. Although
visual programming may seem to be a good way of using designers’ visual
abilities, it still separates the task of programming from the task of designing
the model and suffers scaling problems as models grow.

4. Programming in the model

In order to use designers’ spatial and visual abilities in programming we
suggest contextualising programming concepts and subtasks directly in the
three-dimensional model. Relationship between objects are assigned and
modifi ed in the model view. Object properties are accessed directly in the
model view by clicking on the objects. Programming constructs such as func-
tions and loops are created in the model directly where they are needed and
other objects in the model and their properties can be used as arguments.

Programming in the model also uses aspects of visual programming (e.g.,
Rhino’s Grasshopper) but is different in that the goal is not just to make pro-
gramming visual, but to bring it closer to the model. We use both text and
visual elements in the model to program. In order to avoid scaling problems
of visual programming for larger models, we give the user access to the under-
lying textual program at all time. Every programming task performed in the
model is refl ected in the textual language and vice versa. Small pieces of a
program can be created in the model and larger pieces and modifi cation can
be done in the scripting window.

121PROGRAMMING IN THE MODEL

To make the concept of programming in the model clearer, we explain how
it supports two types of tasks commonly performed in CAD: (1) accessing and
modifying object properties and dependencies, and (2) making lists or series
of objects.

Model objects (points, curves, solids) each have a collection of properties,
the specifi cs of which depend on the creation method used. For instance, a
point created by defi ning Cartesian coordinates may have a list of properties
including coordinate system and X, Y, and Z translations, whereas a point that
is located on a curve has no coordinate system but has additional properties
such as the curve and the point’s position on the curve given by a parameter T.
In programming in the model, these properties are accessible and modifi able
in the model. Short or extended lists of properties may be displayed based on
the user’s demand for one or some of the objects in the model. Figure 2 (A)
shows a model with visible object properties. The level of visibility of property
information boxes is adjustable by the user by changing their transparency.

A: Object properties B: Relationship between objects
F igure 2 . Properties and dependencies represented in the model

In parametric modeling, an object may be dependent on other objects or
variables if other objects or variables are used to determine the value of its
properties. In programming in the model, these dependencies are shown by
links connecting object properties to each other. For each object, inputs come
from the left side and outputs exit from the right. This is similar to Genera-
tive Components’ symbolic view and Grasshopper’s graphic representation of
the model. In fact, they represent the same information. The main difference
is that the graph is embedded in the model. There is no need for a different
window, therefore no need for the user to go back and forth between windows
to get information about object relationships by trying to map the graph to
the model. Figure 2 (B) shows dependencies between a curve and its poles by
links connecting the poles to the left side (representing inputs) of the Poles
fi eld of the curve’s properties. It also shows its relationship with a point on the

122 M. M. MALEKI AND R. F. WOODBURY

curve by a link connecting the right side (representing outputs) of the curve’s
property box to the point.

Object properties are editable in the model and the change immediately
appears in the model. In fi gure 3 point05 is located on the curve and its posi-
tion is determined by a parameter T that has a range between zero and one. In
this fi gure the user changes T from 0.70 to 0.85 by editing the fi eld named T in
the point’s property list in the model. The change in T moves the point closer
to the end of the curve immediately after she hits Enter.

A: T = 0.70 B: T = 0.85
Fi gure 3. Changing object properties in the model.

The user can change the dependencies in the model as well. By grabbing
one end of a link, she can detach it from an object and attach it to another.
Figure 4 demonstrates this action. In the fi gure on the left, point02 is the
second pole of the curve, so the curve is dependent on it. This dependency is
shown by a link that connects point02 to the Poles fi eld of the curve proper-
ties. By grabbing the end of the link that is attached to point02, the user can
move it to another point (in this case point06) to change the pole. The shape of
the curve changes based on the new pole to refl ect the change and the property
list is updated accordingly.

Fig ure 4 . Changing relationships in the model

123PROGRAMMING IN THE MODEL

The second example demonstrates how lists can be made in programming
in the model. In parametric modeling, sometimes it is necessary to provide a
list of objects as an input for other objects or a function. The syntax of a list is
different in each programming language and can be confusing for users. For
example in Generative Components, a list is defi ned by two curly brackets
and object names are separated by comas, e.g., {point01, point02, point03}.
Missing any of these characters results in syntax errors. Some systems provide
the ability to select the objects in the model to be added to the list. But there is
usually no feedback in the model on the current status of the list and the syntax
needs to be checked for possible errors.

In programming in the model, lists are objects that can be placed in the
model. The user can move a list around, select objects to be added to the list,
see the textual representation of the list, and also keep track of the list in the
model through the visual feedback in the model. In fi gure 5 a list of fi ve points
is made in the model and used for creating a curve. As points are being added
to the list, the textual list is created with the correct syntax, without the need
for the user to constantly check for syntax errors. At any time during this
process and afterwards, the user can modify the list by typing the name of the
points directly in the textual representation next to the list object. This ability

A: Starting to fi ll the empty list B: Adding the second point to the list

C: Adding the forth point to the list D: Using the list to make a curve

Figu re 5 . The process of making a list of fi ve points to create a curve by poles

124 M. M. MALEKI AND R. F. WOODBURY

gives the user the option to choose between multiple methods of making and
editing lists.

5. Discussion and conclusion

As mentioned earlier in the paper, this is a work in progress. We have much
more to fi nd and explore. We are currently working on other programming
concepts such as loops and conditionals and how to represent them in the
model. Also, we are developing a prototype of the system that can be used by
designers in future user testing of the project. It is important to mention that
programming in the model is not a programming language on its own. Rather
it is a way of presenting programming and scripting to designers that can be
implemented in any CAD system and adapted to the programming language
used in that system. This textual scripting language then works with program-
ming in the model and provides additional editing capabilities when model
grows in size and complexity or for designers who choose to write code.

Programming in the model will benefi t designers by breaking the initial
fear of code that prevents some of them from starting scripting in CAD.
This is done by gradually introducing programming concepts in the 2D-3D
model and allowing direct manipulation of the program in the model. Design-
ers who choose to learn scripting along the way can follow the development
of the textual program and familiarise themselves with the syntax. Although
the program is represented visually in parts, there is a signifi cant difference
between programming in the model and visual programming in that the
emphasis is on the closeness of program and model and not just visualising it.

Acknowledgements
This research is partially supported by the Canadian NSERC Discovery Grants program, which
support is gratefully acknowledged.

References
Aish, R.: 2003, Extensible computational design tools for exploratory architecture, Architecture

in the digital age: design and manufacturing, Spon Press, New York.
Green, T. R. G. and Petre, M.: 1996, Usability analysis of visual programming environments:

a cognitive dimensions’ framework, Journal of visual languages and computing, 7(2),
131–174.

Hutchins, E. L., Hollan, J. D. and Norman, D. A.: 1985, Direct manipulation interfaces, Human–
computer interaction, 1(4), 311.

Kelleher, C. and Pausch, R.: 2005, Lowering the barriers to programming: a taxonomy of
programming environments and languages for novice programmers, ACM comput. surv.,
37(2), 83–137.

Pane, J. F. and Myers, B. A.: 1996, Usability issues in the design of novice programming
systems, Carnegie Mellon University, School of Computer Science, Pittsburgh, Penn.

125PROGRAMMING IN THE MODEL

Shneiderman, B.: 1983, Direct manipulation: a step beyond programming languages, Compu-
ter, 16(8), 57–69.

Woodbury, R. F.: 2010, Elements of parametric design, Taylor and Francis, forthcoming.

